$$ 设X_1, X_2,\dots X_n 是来自标准正态总体N(0, 1)的简单随机样本,\ 其均值和方差分别为\bar{X}和S^2,记T=\bar{X}+S^2,试求:E(T^2) \ source: 全书P562 $$
问:
$$ 当X_1, X_2, \dots, X_n \sim N(\mu_1, \sigma_1^2), \ Y_1, Y_2, \dots, Y_m \sim N(\mu_2, \sigma_2^2)时,\ 为啥有F=\dfrac{S_X^2/\sigma_1^2}{S_Y^2/\sigma_2^2}\sim F(\sigma_1, \sigma_2)?\ 不应该是\dfrac{(n-1)S_X^2/\sigma_1^2}{(m-1)S_Y^2/\sigma_2^2}\sim F(\sigma_1, \sigma_2)吗? $$
答:$F$函数的上下要分别再除以$n-1、m-1$!
$$ 设总体X服从参数为p的0-1分布,\ 则来自总体X的简单随机样本X_1, X_2,\dots,X_n的概率分布为______?\
答案是:\ p(x_1, x_2,\dots, x_n) = \begin{cases} p^{n\bar{x}}(1-p)^{n(1-\bar{x})}, &x_i = 0或1 \ 0, &o.w
\end{cases} $$